SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "LAR1:miun ;pers:(Edlund Håkan);lar1:(ri)"

Search: LAR1:miun > Edlund Håkan > RISE

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Costa, Carolina, et al. (author)
  • Emulsion Formation and Stabilization by Biomolecules : The Leading Role of Cellulose.
  • 2019
  • In: Polymers. - : MDPI AG. - 2073-4360. ; 11:10
  • Journal article (peer-reviewed)abstract
    • Emulsion stabilization by native cellulose has been mainly hampered because of its insolubility in water. Chemical modification is normally needed to obtain water-soluble cellulose derivatives. These modified celluloses have been widely used for a range of applications by the food, cosmetic, pharmaceutic, paint and construction industries. In most cases, the modified celluloses are used as rheology modifiers (thickeners) or as emulsifying agents. In the last decade, the structural features of cellulose have been revisited, with particular focus on its structural anisotropy (amphiphilicity) and the molecular interactions leading to its resistance to dissolution. The amphiphilic behavior of native cellulose is evidenced by its capacity to adsorb at the interface between oil and aqueous solvent solutions, thus being capable of stabilizing emulsions. In this overview, the fundamentals of emulsion formation and stabilization by biomolecules are briefly revisited before different aspects around the emerging role of cellulose as emulsion stabilizer are addressed in detail. Particular focus is given to systems stabilized by native cellulose, either molecularly-dissolved or not (Pickering-like effect).
  •  
2.
  • Costa, Carolina, et al. (author)
  • Interfacial activity and emulsion stabilization of dissolved cellulose
  • 2019
  • In: Journal of Molecular Liquids. - : Elsevier B.V.. - 0167-7322 .- 1873-3166. ; 292
  • Journal article (peer-reviewed)abstract
    • Some aspects of the interfacial behavior of cellulose dissolved in an aqueous solvent were investigated. Cellulose was found to significantly decrease the interfacial tension (IFT) between paraffin oil and 85 wt% phosphoric acid aqueous solutions. This decrease was similar in magnitude to that displayed by non-ionic cellulose derivatives. Cellulose's interfacial activity indicated a significant amphiphilic character and that the interfacial activity of cellulose derivatives is not only related to the derivatization but inherent in the cellulose backbone. This finding suggests that cellulose would have the ability of stabilizing dispersions, like oil-in-water emulsions in a similar way as a large number of cellulose derivatives. In its molecularly dissolved state, cellulose proved to be able to stabilize emulsions of paraffin in the polar solvent on a short-term. However, long-term stability against drop-coalescence was possible to achieve by a slight change in the amphiphilicity of cellulose, effected by a slight increase in pH. These emulsions exhibited excellent stability against coalescence/oiling-off over a period of one year. Ageing of the cellulose solution before emulsification (resulting in molecular weight reduction) was found to favour the creation of smaller droplets.
  •  
3.
  • From, Malin, et al. (author)
  • Tuning the properties of regenerated cellulose : Effects of polarity and water solubility of the coagulation medium
  • 2020
  • In: Carbohydrate Polymers. - : Elsevier Ltd. - 0144-8617 .- 1879-1344. ; 236
  • Journal article (peer-reviewed)abstract
    • In this study, the effect of different alcohols and esters as a coagulation medium in the regeneration of cellulose dissolved in an aqueous LiOH-urea-based solvent was thoroughly investigated using various methods such as solid state NMR, X-ray diffraction, water contact angle, oxygen gas permeability, mechanical testing, and scanning electron microscopy. It was observed that several material properties of the regenerated cellulose films follow trends that correlate to the degree of cellulose II crystallinity, which is determined to be set by the miscibility of the coagulant medium (nonsolvent) and the aqueous alkali cellulose solvent rather than the nonsolvents’ polarity. This article provides an insight, thus creating a possibility to carefully tune and control the cellulose material properties when tailor-made for different applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view